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The vander Waals three–body force shell model (VTSM) has been developed by modifying the three –body force shell 
model (TSM) for the Lattice dynamic of ionic crystals with (NaCl) structure. This model includes van der Waals interactions 
(VWI) and three-body interactions (TBI) in the framework of rigid shell model (RSM). In fact the present model (VTSM) has 
revealed much better descriptions of dynamical properties of KF behaviour of potassium floride has been investigated 
theoretically by using van der Waals three-body force shell model (VTSM).A comparative study of the dynamical behaviour 
of KF has also been done between the present model (VTSM). Good agreement has been observed between the 
theoretical and experimental results, which give confidence that it is an appropriate model for the complete description of 
ionic crystals with NaCl structure. 
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1. Introduction  
 
During the last two decades, a considerable interest 

has been shown by theoretical and experimental workers 
in the investigation of lattice dynamical behavior of 
potassium floride (KF). This solid is an important member 
of potassium halides and forms a simple class of ionic 
solids. The knowledge of phonon dispersion curves 
(PDC), Debye temperature variation, two phonons 
IR/Raman spectra, third order elastic constants (TOEC), 
fourth order elastic constants (FOEC) and the pressure 
derivatives of second order elastic constants (SOEC) and 
Cauchy discrepancy (C12-C44) have been of fundamental 
importance. Due to availability of experimental data on 
elastic [1], dielectric [2], vibrational [3-7] and optical 
properties [8] of this solid, it is quite interesting and 
encouraging for theoretical workers to predict its lattice 
dynamical properties. In the recent past some researchers 
have studied the lattice dynamics of MC60 compounds in 
FCC (Face centered cubic) phase by using Rigid Shell 
Model (RSM) [9-11]. The TOEC, FOEC and the pressure 
derivatives of SOEC and their experimental values 
reported independently by Roberts [12] and Chang [13]. In 
the present paper we have developed a new model to study 
the lattice dynamics of alkali halides which we take here 
(KF). The new model developed by us is known as van der 
Waals three-body force shell model [VTBFSM]. This 
model considers all possible interactions for explaining the 
harmonic as well as an-harmonic properties of potassium 
halides.                      

 
2. Theory 
 
The essential formalism of VTBFSM is the inclusion 

of VWI and TBI in the framework of RSM. The 
interactions system of present model thus consists of long-

range screened Coulomb, VWI, three-body interactions 
and short-range overlap repulsion operative up to the 
second -neighbor’s ions in KF. Looking into the adequacy 
of the interaction system, the present model may hopefully 
be regarded as a successful approach for the dynamical 
descriptions of potassium floride. The general form of 
VTBFSM can be derived from the crystal potential energy 
per unit cell, given by 

 
  Φ = ΦC+ΦR+ΦTBI+ΦVWI                          (1) 

Where, First term ΦC is Coulomb interaction potential. 
This interaction potential is long-range in nature. An ionic 
crystal can be regarded as made up of positive and 

negative ions separated by a distance ijrr , where 
ijrr is a 

vector joining the ions i and j. According to electrostatic 
theory, the Coulomb energy of interaction of i-th ion with 
j-th ion is written as ΦC( ijrr ). Thus, total Coulomb energy 
for the crystal is 
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where, the prime means summation over all ions except 
i=j, εij will be +1, if i and j are like ions and –1, if they are 
unlike. If we consider infinite lattice, the Coulomb 
potential energy for the whole crystal is given as  
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Where, αm is the Modelung constant and r0 is the 
equilibrium nearest neighbors distance. 
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Second term ΦR is short-range overlap repulsion 
potential. In order to prevent the lattice from collapsing 
under the Coulomb attraction, there must be the overlap 
repulsion between the ions. These forces have quantum 
mechanical origin and arise when further overlap between 
neighbouring ions is restricted by the Pauli Exclusion 
Principle. The repulsive energy in not so well understood 
as the Coulomb attraction. The most commonly used 
analytical expressions for the repulsive energy are given 
by the inverse and exponential power laws such that 

 
( ) n

ijij
R arr =Φ  (Born Potential) 

( ) )/.(exp ρijij
R rbr −=Φ  (B-M) Potential) 

 
Where, a (or b) and η(orρ) are the Born exponents called 
the strength and hardness parameters, respectively. 

Third term ΦTBI is three-body interactions potential. 
According to quantum-mechanical theory using Heitler-
London approximation, the atomic wave-functions are 
treated rigidly connected with their nuclei and supposed 
not to change in a deformation of the lattices. This does 
not mean that the electron-charge density is sum of charge 
densities for a system of free-ions. The reason for this lies 
in the fact that when the ions are put in a lattice their 
electron wave function overlaps and get deformed. These 
effects lead to the non-orthogonality of the one electron 
wave function. This non-orthogonality causes the charge 
distribution to differ from the sum of the densities for free 
ions, the differences being more pronounced in the regions 
where the overlap between the atomic wave-functions in 
large. As a natural consequence of the anti-symmetry 
requirement on the wave function [17], this alteration in 
the electronic charge density causes a charge depletion 
which depends on the internuclear separation and interacts 
with all other charges via Coulomb force law and gives 
rise to long-range TBI introduced by Lowdin [18] and 
Lundqvist [19]. This interaction potential is expressed as 
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Where, the term f(r)0 is a function dependent on the 
overlap integrals of the electron wave-functions and the 
subscript zero on the bracket indicates the equilibrium 
value of the quantities inside. ΦTBI is also long-range in 
nature hence it is added to the ΦC. and last term ΦVWI is 
van der Waals interaction potential and owes its origin to 
the correlations of the electron motions in different atoms.  

Using the potential energy expression (1) and 
introducing the effect of VWI and TBI, the secular 
determinant is given as 

 
( ) 02 =− IMqD ωr

                           (2) 

 
Here D (q) is the (6 × 6) dynamical matrix for Rigid Shell 
model expressed as:     
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The numbers of adjustable parameters have been 

largely reduced by considering all the short-range 
interactions to act only through the shells. This 
assumptions leads to R = T = S C' is modified long-range 
interaction matrix given by  

 
C' = C + (Zm

-2 Z r0f0') V                    (4) 
 

If we consider only the second neighbour dipole-
dipole van der Waals interaction energy, then it is 
expressed as: 
 

          Φdd
vwI(r) = – Sv                                          )(rvΦ=                 (5) 

 
 
Where, Sv is lattice sum and the constants C++ and C -- are 
the van der Waals coefficients corresponding to the 
positive - positive and negative – negative ion pairs, 
respectively.  

By solving the secular equation (2) the expressions 
derived for elastic constants (C11, C12, C44) corresponding 
to VTBFSM are follows as: 
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In view of the equilibrium condition [(dΦ/dr)0=0] we 

obtain 
 
                      B11+B22+B12= -1.165 Zm

2                  (9) 
 
Where   
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The term fo is function dependent on overlap integrals 
of electron wave functions. By using the secular equation 
(2) along [q o o]direction and subjecting the short and 
long-range coupling coefficients to the long wavelength 
limit 0→q

r
expressions for two distinct optical vibration 

frequencies (ωL and ωT) are obtained as: 
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where the abbreviations reported by R. K. Singh [11]stand 
for   
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cell volume for NaCl lattice) 

by solving the dynamical matrix along [.5, .5, .5] 
directions at L-Point modified expressions for 

)(),(),(),( LandLLL TALATOLO ωωωω  are as follows: 
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Where 

 

    
 

 

  

 

 

 
 
 C and V is Coulomb and three body force matrices 
evaluated at L-Point and D is van der Waals contribution. 
We have used the further expressions for the TOEC, 
FOEC and pressure derivatives of SOEC and TOEC 
derived by Roberts et al [8].    

 
 
3.  Results and discussion   
 
The input data and calculated model parameters for 

KF are listed in Table 1. We have computed phonon 
dispersion frequencies for the allowed 48 non - equivalent 
wave vectors in the first Brillouin zone by using our model 
parameters. We present the phonon dispersion curves 
[PDC] only along the three principal symmetry directions 
Fig. 1. Our phonon dispersion curves for KF agree well 
with the measured data reported by W. Buhrer [3]. It is 
evident from that our predictions using present model 
VTBFSM are better than those by using other models [13-
14]. In the present study the variation of Debye 
temperatures (ΘD) at different temperatures T have also 
been calculated and curve has been plotted along with 
available experimental data [6] in Fig. 2. Though, the 
agreement is better with our model, still, there is slight 
discrepancy between theoretical and experimental results 
at higher temperatures. 

 
 

Table 1. Input data and model parameters for KF. 
 

Input data Model Parameters 
Parameters Value Parameters Value 

C11 (1011 dyn/cm2)    7.570 [1]     A12 11.6719 
C12 (1011 dyn/cm2)   1.350 [1]         B12 -0.7319 
C44 (1011 dyn/cm2)   1.336 [1]         A11 -0.5888 
νL    (THZ)                 5.660 [3]         B11    -0.3640 
νT   (THZ)                  3.730 [3]        A22                       0.2694 
r0   (10-8cm)             2.648 [10]       B22 -1.3303 
α1   (10-24 cm3)         1.201 [10]       d1 0.0831 
α2   (10-24 cm3)          0.759 [10]      d2   -4.0840 
C++ (10-60 erg cm6)   64.90 [12]       Υ1                         -4.0840 
C- - (10-60 erg cm6)   29.20 [12]       Υ2                         -5.6541 
  rofo'  -0.0128    
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Fig. 1. Phonon dispersion curve for KF. Experimental points  
 •   Longitudinal; ∇   Transeverse; ⎯  Present study 

 
 
 

 
 
 

Fig. 2. Shows the Debye temperature variation of KF. 
 
 
The present model is also capable to predict the two 

phonon Raman/IR spectra. The results of these 
investigations from combined density states (CDS) 
approach have been shown in Fig. 3 which shows that the 
agreement between experimental data [4-5] and our 
theoretical peaks is generally good for both two phonon 
Raman/IR spectra for KF. The assignment made by the 
critical point analysis, the present study has been listed in 
Table 2. The interpretation of Raman / IR spectra achieved 
from both CDS approach and critical point analysis is 
quite satisfactory.      

 

 
Fig. 3. Combined density curve. 

 
 

Table 2. Assignments of two-phonon Raman and  
infra-red peaks for KF. 

 
Raman active Infra-red Active 
Present Study Present Study CDS 

Peaks 
Cm -1 

Assignments Values 
Cm-1 

Assignments Values 
Cm-1 

87 LA –TA (X)
  

86   

123 LO-TA(X) 123   
154     
190 2TA(Δ) 

2TA(X) 
186 
193 

  

280 LA+TA(Δ) 
LA+TA(X) 

280 
280 

  

297 TO+TA(X) 
TO+TA(Δ) 

293 
293 

 293 

320 LO+TA(Δ) 320 LO+TA (Δ) 320 
365 2LA(X) 366 2LA(Δ) 373 
413 LO+LA(Δ) 413 LO+LA(Δ) 413 
426 LO+TO(Δ)     426 LO+TO(Δ)     426 

 
It is interesting to note our results on TOEC, FOEC 

and the pressure derivatives of SOEC are generally better 
than those of others [7-8] as evident from Table 3. 
However, our results are closer to their experimental 
values reported independently by Roberts [12] and Chang 
[13]. It can also see that Cauchy discrepancy is smaller for 
TOEC than for SOEC. The pressure derivatives of  
effective SOEC given in Table 3 are found to be generally 
in good agreement with their observed data [7-8]. To sum 
up, we can say that the inclusion of VWI and TBI are 
essential for the description of lattice dynamics of 
potassium halides [15]. As such this model has been more 
successfully applied to other alkali halides [16-23].  
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Table 3. TOEC and FOEC (1012 dyn/cm2), pressure derivatives of SOEC and TOEC (dimensionless) and Cauchy  

discrepancy (in 1012 dyn/cm2) for KF. 
 

KF KF KF Property 

Present 

Property 

Present Expt. 

Property 

Present 

C111 -10.813 dk1/dp 40205 5.260a C112- C166 -0.00022 

C112 -0.249 ds1/dp 4.846 5.250 a C123- C456 0.00250 

C123 0.265 dc1
44/dp -0.385 -0.430 a C144- C456 0.00083 

C144 0.264 dc1
111/dp 38.842  C123 – C144 0.00167 

C166 - 0.475 dc1
112/dp 0.970  C1112 – C1166 0.02222 

C456 0.263 dc1
166/dp 1.222  C1122 – C4444 -0.00174 

C1111 2.191 dc1
123/dp 1.102  C1123 – C1144 -0.00588 

C1112 - 0.425 dc1
144/dp -0.897  C1123 – C1244 -0.00218 

C1166 - 0.425 dc1
456/dp 0.982  C1123 – C1456 0.00508 

C1122 -0.003    C1123 – C4466 - 0.01784 

C1266 0.005    C1122 – C1266 0.00239 

C4444 0.470      

C1123 -0.617      

C1144 - 0.611      

C1244 -0.615      

C1456 -0.612      

C4466 -0.616      
                                              a - Ref. [8,9] 

 
4. Conclusions 
 
The computed phonon dispersion curves in Fig. 1 that 

inclusion of Van der Waals interaction have improved the 
agreement between experimental data [3] and our results. 
The inclusion of Van der Waals interaction (VWI) with 
(TBI) have influence both longitudinal and transverse 
optic modes much more than acoustic branches. The 
agreement between theory and experimental data at x point 
is also excellent. Another striking feature of present model 
is noteworthy from the excellent reproduction of almost all 
branches hence the prediction of phonon dispersion curves 
(PDC) for KF using (VTSM) may be considered more 
satisfactory than from other models [11] we have plotted 
Debye temperature curve at temperature (T). It is evident 
from Fig. 2 our results is good with measured 
experimental data [6] and generally better than of 
breathing shell model (BSM). The combined density of 
states (CDS) for KF has plotted in Fig. 3 the basic aim of 
the study of two phonon IR/Raman scattering spectra is to 
correlate the neutron and optical experimental data of KF. 
We have also investigated the anhormonic properties of 
KF by using VTBFSM this includes the predictions of 
third and forth order elastic constants. Since no 

experimental values on these SOE and TOE constants.. 
Since some on point only experimental values [8, 9] on 
these properties have been reported so for, we are unable 
to comment as such on the reliability of our results 

 In this paper we have systematically reported phonon 
dispersion curves, Debye temperature, combined density 
of states and anhormanic property of KF on the basis of 
overall fair agreement, it may be concluded that the 
present model van der waals three body force shell model 
(VTBFSM) is adequately capable to describe the crystal 
dynamic of KF.      
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