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This paper obtains dark and singular soliton solutions to Thirring model that is studied with parabolic law nonlinearity. The 
integration scheme employed is (G’/G)-expansion method. Apart from soliton solutions, singular periodic solutions and 
plane wave solutions are also obtained as a byproduct. The constraint conditions hold these solitons in place. 
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1. Introduction 
 

Optical solitons is one of the most important areas of 

research in the field of nonlinear optics. There are several 

aspects of solitons that are exhaustively studied in 

polarization-preserving fibers [1-10]. However, on the flip 

side, not many results are reported for birefringent fibers. 

The governing equation is the nonlinear Schrödinger's 

equation (NLSE). For birefringent fibers, NLSE splits into 

two components that lead to an unwanted feature that is 

known as differential group delay. 

This paper focuses on obtaining soliton solutions in 

birefringent fibers with parabolic law nonlinearity when 

the self-phase modulation (SPM) is negligible and hence 

discarded. This results in Thirring solitons. The results on 

Thirring solitons with parabolic law nonlinearity is being 

reported for the first time in this paper. The integration 

scheme adopted here is the (G’/G)-expansion method that 

retrieves dark and singular solitons only. In addition, 

singular periodic solutions and plane wave solutions are 

also obtained as a byproduct of this scheme. 

 

 

2. The model 
 

The dynamics of solitons in a birefringent fibers with  

parabolic law medium is governed by coupled NLSE. The 

dimensionless for of this coupled NLSE is given by: 

 
2 4 2 2

1 1 1 1( | | | | | | | | ) 0t xxiu a u b v c v d u v u             (1) 

 

2 4 2 2

2 2 2 2( | | | | | | | | ) 0t xxiv a v b u c u d v u v    

     

 (2) 

 

where u(x, t) and v(x, t) are dependent variables that 

represent the complex-valued wave profiles. The 

independent variables are the spatial variable x and the 

temporal variable t. The coefficients aj for j = 1, 2 

represents group velocity dispersion (GVD). The 

coefficients of nonlinear terms due to cross-phase 

modulation are bj , cj and dj . It must be noted that SPM 

terms are already removed from the model described by 

(1) and (2). 

In order to study this coupled system given by (1) and 

(2), the wave profiles are split into amplitude and phase 

components respectively as 

 
1( , ) ( )

i
u x t U e

                                 (3) 

and 
2( , ) ( )

i
v x t V e

                                (4) 

 

where 

 

( )B x t    
 

The variables u(x, t) and v(x, t) are amplitude components 

of the wave profiles and the phase factor is given by 

 

,       ( 1,2)j j j jx t for j                      (5) 
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where κj is the frequency of the solitons, ωj represents the 

wave number, ϑj is the phase constant. The subsequent 

section explains the integration scheme. Substituting 

equations (3) and (4) into equations (1) and (2), and then 

decomposing into real and imaginary parts leads to 

 

1 12 a                                     (6) 

 

and 

 

2 22 a                                    (7) 

 

that follows from the imaginary part. Next, equating the 

two velocities with each other leads to a constraint relation 

between the solitonparameters as 

 

2 2 1 1a a                                    (8) 

 

which is a constraint condition for the solitons to exist. 

The real part equations are discussed in Section-3. The 

following section reviews the G’/G-expansion integration 

scheme. 

 

 

3. Overview of the scheme 
 

Suppose that we have a nonlinear evolution equation 

of the form 

 

( , , , , , , ) 0x t xx xt ttP u u u u u u                       (9) 

 

where u=u(x, t)  is an unknown function, P is a polynomial 

in its arguments, which includes nonlinear terms and 

highest order derivatives. Let us now review the main 

steps for solving nonlinear equations using the G’/G-

expansion scheme [2]. 

Step 1: Seek traveling wave solution of Eq. (9) by taking 

( , ) ( )u x t u  , x ct   , and transform Eq. (9) into the 

following ordinary differential equation (ODE) 

 
2( , , , , , , ) 0Q u u cu u cu c u                    (10) 

 

where c is a constant and primes denote the derivatives 

with respect to  .  

Step 2: If possible, integrate Eq. (10) term by term one or 

more times yields constant(s) of integration. For simplicity 

the integration constant(s) can be set to zero. 

Step 3: Suppose that the solution ( )u   of ordinary 

differential Eq. (10) can be expressed as a finite series in 

the form 

 

0

( )
( )

( )
( )

i
n

i

i

G
u a

G







                            (11) 

 

where ia   are real constants, with 0na  , to be 

determined, n  is a positive integer, which is determined 

by considering the homogeneous balance between the 

highest order derivatives and nonlinear terms appearing in 

ordinary differential Eq. (10) and function ( )G    is the 

general solution of the auxiliary linear ordinary differential 

equation 

 

( ) ( ) ( ) 0,G G G                         (12) 

 

where   and   are real constants to be determined later. 

Substituting Eq. (11) together with Eq. (12) into Eq. 

(9) yields an algebraic equation involving powers 

of ( / )G G . Equating the coefficients of each power of 

( / )G G  to zero, to obtain a system of algebraic equations 

for 
ia ,  ,   and c . Then, we solve the system with the 

aid of a computer algebra system, such as Maple, 

Mathematica or Matlab to determine these constants. Since 

the solution of Eq. (10) have been well known for us 

depending on the sign of the discriminant 2 4 ,    the 

exact solutions of the given Eq. (9) can be obtained. 

 

 

4. Mathematical analysis 
 

Now, in order to seek the optical solitons of Eqs. (1) 

and (2), We use the transformation defined in Eqs. (3)-(5). 

The parameters , ,L   and   are undetermined 

parameters. 

 
2 2 4 2

1 1 1 1 1 1( ) 0a bV cV U B aU                (13) 

 
2 2 4 2

2 2 2 2 2 2( ) 0a b U c U V B a V              (14) 

 

Now, we find the solution of Eq. (13) and Eq. (14) by 

balancing the nonlinear term U with the highest derivative 

term U’’, we get m = 1, and similarly for V , we have n = 1 

thus, we can write the solution of the form 

 

1 0 1( ) ,    0( )G
U

G
   


  

              

 (15) 

 

1 0 1( ) ,    0( )G
V

G
   


                    (16) 

 

By using Eqs. (12) we can derive from Eq. (15) and Eq. 

(16) that 

 
2

1 1 1( )
G G

U
G G

     
    

       
   

              (17) 

 
3 2

1 1

2

1 1 1

( ) 2 3

(2 )

G G
U

G G

G

G

   

     

    
     

   

 
   

 

            (18) 
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2

2 2 2

1 0 1 0( ) 2
G G

U
G G

    
    

     
   

           (19) 

 

2 2 2 2

1 0 1 0( ) 2( ) ( )G G
V

G G
    

 
               (20) 

 
2 2 3

4 4 2 2 3

1 0 1 1 0

2 3

2 2 4 3 3

0 1 0 1 0 1 0

2

3 2 2

1 0 1 0

( ) 2

2 2

2 4

G G G
U

G G G

G G G

G G G

G G

G G

     

      

   

       
       

     

       
        

     

    
    

   

   (21) 

 
2 2 3

4 4 2 2 3

1 0 1 1 0

2

2 2 4 3

0 1 0 1 0

3 2

3 3 2 2

1 0 1 0 1 0

( ) 2

2

2 2 4

G G G
V

G G G

G G

G G

G G G

G G G

     

    

     

       
       

     

    
     

   

       
       

     

   (22) 

 
2

1 1 1( )
G G

V
G G

     
    

       
   

              (23) 

 
3 2

1 1

2

2

1 1 1

( ) 2 3

(2 )

G G
V

G G

G

G

   

     

    
     

   

 
   

 

            (24) 

 

Substituting Eqs. (15)-(24) into Eq. (13) and Eq. (14) and 

setting the coefficients of ( / ) ( 0,1,2,3)iG G i   to zero, 

we obtain the following system of nonlinear algebraic 

equations: 

 
0

2 2 4 2

0 1 0 1 1 0 1 0 0 1 0 1 1

2 2 4 2

0 2 0 2 2 0 2 0 0 2 0 2 1

1

2 2 4

1 1 1 1 1 1 1 0 1 0 1 1 0 1 0

3 3 2 2 2

0 1 0 1 0 1 0 1 1 1 1 1

2

2 1 1 2 2

: 0,

: 0

: 2

2 4 2 0,

:

G
a b c B a

G

a b c B a

G
a b c b

G

c c a B B a

a

         

         

         

         

   

 
      

 

     

 
     

 

    

  2 4

1 2 0 2 0 1 2 0 1 0

3 3 2 2 2

0 2 1 0 0 1 0 2 1 2 1

2

2 4 2 0

b c b

c B a B a

      

         

  

    

 

 

2

3 3 3

1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1

2 4 2 2 2 2

0 1 1 0 1 1 0 1 0 1 0 1 1 0

2

1 1

3 3 3

2 1 1 0 2 1 0 1 1 1 0 2 2 1 0 1

2 4 2 2 2 2

0 2 1 0 2 1 0 2 0 1 0 2 1 0

2

2 1

: 2 2 2 2

2 4

2 0,

: 2 2 2 2

2 4

2 0

G
b c c c

G

b c c c

B a

b c c c

b c c c

B a

           

         

 

           

         

 

 
   

 

   

 

  

   

 

 

 
3

2 4 2 2 2 2

1 1 1 1 1 1 1 1 0 1 1 1 1 0

3 2

0 1 1 0 1 1

2 4 2 2 2 2

1 2 1 1 2 1 1 2 0 1 1 1 1 0

3 2

0 2 1 0 2 1

: 2 4

2 2 0,

: 2 4

2 2 0.

G
b c c c

G

c B a

b c c c

c B a

         

   

         

   

 
   

 

  

  

  

 

 

Solving the above system with the aid of  Maple 12, we 

have the following set of solution 

 

 

2 2 2

2 2 2 2 2 2

1 02

0 2

2

2 2 2

1 0 2

2

8 ( )
,   0

2

b b c a

B c

a

B a

    
 



 
 



   
  


 

 
 

The following soliton solutions can be constructed. 

 

Case I: When 2 4 0,    we obtain 

 

1 1 1

2 2 2

2 2 2 2 2 2 2

1 2

0 2

2 2

1 2

2 2

1 2

8 ( )
( , ) 4

2

1 1
sinh 4 cos 4

2 2
1 1

cosh 4 sinh 4
2 2

[ {

( )}]

x t

b b c a
u x t

B c

C C

C C

e
  

    
  



   

   

  

   
    

  



  



 (25) 

 

and 

 

2 2 2

2

22 2 2

1 0 2

2

2 2

1 2

2 2

1 2

( , ) 1 4

1 1
cosh 4 sinh 4

2 2
1 1

sinh 4 cosh 4
2 2

[ {

( )}]

x t

a
v x t

B a

C C

C C

e
  

 
   



   

   

  


    

  



  



 (26) 

 

Where 1C   and 2C  are constants. If 1C   and 2C  assume 

particular values, soliton solutions are recovered. 

 

(i) If 1 0C   but 2 0C  , we obtain the singular soliton 

solutions as follows 
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1 1 1

2 2 2

2 2 2 2 2 2

2 2

0 2

2 2

8 ( )
( , )

2

1
( 4 ) coth 4

2

[

]

x t

b b c a
u x t

B c

e
  

    



    

  

   
 

     


   

(27) 

 

and 

2 2 2

2

2 2 2

2 0 2

2

2 2

( , ) 1

1
( 4 )coth 4

2

   

[

{ }]

x t

a
v x t

B a

e
  

 




    

  


 

   

    (28) 

 

If 
1 0C   but 

2 0,C  we obtain dark solitons as follows 

 

1 1 1

2 2 2

2 2 2 2 2 2

3 2

0 2

2 2

8 ( )
( , )

2

1
( 4 ) tanh 4

2

    

[ ]

x t

b b c a
u x t

B c

e
  

    



    

  

   
 

    


     (29) 

 
and 

2 2 2

2

2 2 2

3 0 2

2

2 2

( , ) 1

1
( 4 ) tanh 4

2

   

[

{ }]

x t

a
v x t

B a

e
  

 




    

  


 

    

    (30) 

 

(ii) If 1 0C   , 1 2C C  , we also obtain 

 

1 1 1

2 2 2

2 2 2 2 2 2

4 2

0 2

2 2

0

8 ( )
( , )

2

1
( 4 ) tanh 4

2

       

[

{ ( )}]

x t

b b c a
u x t

B c

e
  

    



     

  

   
 

     

   (31) 

 

and 

 

2 2 2

2

2 2 2

4 0 2

2

2 2

0

( , ) 1

1
( 4 ) tanh 4

2

.       

[

{ ( )}]

x t

a
v x t

B a

e
  

 




     

  


 

     

  (32) 

 

Case II: When 2 4 0,     we obtain 

1 1 1

2 2 2

2 2 2 2 2 2 2

5

0 2

2 2

1 2

2 2

1 2

8 ( )
( , ) ( 4 )

2

1 1
sin 4 cos 4

2 2
1 1

cos 4 sin 4
2 2

       

[

( )]

x t

b b c a
u x t

c

C C

C C

e
  

    
  



     

     

  

   
    

   



  

  (33) 

and 

 

2 2 2

2

22 2 2

5 0 2

2

2 2

1 2

2 2

1 2

( ) 1 4

1 1
sin 4 cos 4

2 2
1 1

cos 4 sin 4
2 2
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where 
1C  and 

2C  are constants. If 
1  C and 

2C  assume 

specific values, singular periodic solutions are obtained: 

 

(i) If 
1 0C   but 

2 0,C   we obtain trigonometric traveling 

wave solution as follows 
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(ii) If 
1 0C   but 

2 0,C    we obtain 
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If 1 0C   , 1 2C C  , we obtain 
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Case III: When 2 4 0,   we obtain the plane wave 

solutions. 

 

1 1 1

2 2 2

2 2 2 2 2 2

9 2

0 2

2

1 2

8 ( )
( , )

2

2
[ ] x t

b b c a
u x t

B c

C
e

C C

  

    







  

   
 


 



     (41) 

 

and 

 

2 2 2

2

2 2 2 2

9 0 2

1 22

( , ) 1
2

[ { }]

x t

a C
v x t

C CB a

e
  

  




  

 
  





        (42) 

 

 

5. Conclusions 
 

In this paper, ( / )G G -expansion method was 

employed to secure Thirring dark and singular optical 

soliton solutions to birefringent fibers with parabolic law 

nonlinearity. These soliton solutions appear with their 

respective constraints that guarantee the existence of these 

solitons. Additionally, singular periodic solitons and plane 

wave solutions are also retrieved as a byproduct of this 

method. The results of the application of the integration 

scheme is highly promising. Later, this method will be 

applied to other situations in nonlinear optics that will lead 

to promising results which will be reported elsewhere. 
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