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Propagation supermodes have been analysed in concentric ring waveguides. The ring waveguide core is divided into three 
layers each one with a constant refractive index. The influence of the central layer width in the electrical field propagation is 
analysed as a function of the waveguide refractive index. 
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1. Introduction 
 
Ring lasers have been used in several optical devices 

such as amplifiers [1], filters [2], logical elements [3], 
multiplexers / desmultiplexers [4] and sensors [5]. 

They are important building blocks for photonic 
devices in optical integrated circuits [6,7]. Numerous 
scientific works have been published on the analytical 
analysis of linear dielectric ring lasers with a constant 
refractive index inside the cavity [8,9]. 

 The device fabrication with the inclusion of ring 
lasers is the most promising and sustainable element in the 
manufacture of optical and electro-optical integrated 
circuits, with a high density of integration (VLSI).  

In the nonlinear optical domain, ring lasers have also 
importance. Initially, the structures were cumbersome and 
large. The solution to this problem appears with the rise of 
the integrated optics. The first semiconductor ring laser 
was demonstrated in the 80's [10,11]. 

In the last years, ring semiconductor laser with a 
circular geometry has been studied, since they do not need 
mirrors to ensure light feedback. The lasers and other 
devices based on ring structures has been adopted as the 
basic devices in the design of optoelectronic integrated 
circuits. These devices have applications in the generation 
of ultra-short pulses, rotation sensors, digital circuits and 
digital optical memories [12-16]. 

Due to the importance of the ring lasers structures, in 
this paper the electrical field propagation is studied in this 
type of structures.  

In the present work, a model based on an analytical 
approach is used to describe the TE supermodes 
propagation in 2-D ring lasers waveguides.  

This model could be extended to other devices namely 
diode lasers with ring resonators [17, 18] where nonlinear 
optical effects are present. In these cases, modal properties 
of the ring waveguides are dependent on the nonlinear 
variation of the media refractive index with the electric 
field. In some problems, the perturbation theory [19] can 
be used allowing an analytical approach. In problems with 
higher geometrical complexity, numerical techniques, such 

as the finite element method (FEM) [20, 21], should be 
applied. 

The paper is organized according the following 
section: in section II the propagation model is present; in 
section III some results will be discussed and in section IV 
some conclusions are presented. The simulation processes 
and the corresponding software was developed by the 
authors.  

 
 
2. Propagation model 
 
In Fig. 1 the structure studied in this paper is shown. 
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Fig. 1. Waveguide transversal section. The blue line is 
the refractive index profile, d is the total waveguide 
width, l1, l2, l3 are the three waveguide  layer widths (l1+  
                 l3=d-l2) and R is the curvature radius 
 
 
The material properties remain constant in the 

azimuthal coordinate, considered as the propagation 
direction, allowing the use of a 2D approach model to the 
electric field propagation. It is also considered that the 
waveguide core is divided into three layers. 

Similarly to [22] and [23, 24], Bessel functions have 
been used to describe the electric field propagation into the 
waveguide. The electromagnetic field is achieved from the 
space-time Maxwell equations: 
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    D 
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 0 B 


D= E and B= H  are the medium constitutive 

equations. The medium is considered linear and isotropic, 
without dielectric or magnetic losses. The vector D is the 
electric displacement, E the electric field strength, B the 
magnetic induction vector, H the magnetic field intensity, 
J the electric current density and  the electric charge 
density. It is supposed that there is no electrical charges 
and electric current distributions inside the waveguide. 
The electric field is calculated assuming an harmonic 

variation on time ( j te  ,  is the angular frequency). With 
these assumptions the Maxwell's equations in the 
frequency domain take the following form: 

 
 j E - H 


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The electric and magnetic fields in ring waveguides 

are described by: 
 

   j( t )
r zr, ,z,t ( E ,E ,E )( r,z )e  

 E 


   j( t )
r zr, ,z,t ( H ,H ,H )( r,z ) e  

 H 
 
where  is the propagation constant.  

Due to the existence of energy losses by radiation, the 
complex propagation constant is defined as:  = β-j,           
β > 0,  > 0. The real part is the phase constant and the 
imaginary part the attenuation constant. 

In this paper, it is analyzed the TEz modes. With 

zE   and 0rE   the following equations will be 

obtained: 
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where n is the refractive index. With some simplification, 
it is possible to find the wave equation: 
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where 0 0/ 2 /k c     is the wave number, c0 the speed of 

light and λ the wavelength.  
Equation (15) admits the particular solution: 
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where zk is the propagation constant along the z direction. 

Due to the symmetric properties of the system, the 
electromagnetic field remains constant in the axial 
direction (z). 

The second equation is a Bessel differential equation 
with the Bessel functions as a solution:  
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In the waveguide, when r0, the solution denoted by 

index s is the Bessel function of first kind. For the 
waveguide core, where an index i is used, the solution is a 
combination of first and second kind Bessel functions and 
for the outer region (r) - index c - the solution is a 
Hankel function of the second kind. All the Bessel 
functions have order  and argument kr, where  is the 
complex propagation constant and k is given by nk0, n 
being the refractive index of the corresponding layer. 

The coefficients A and B are acquired by the boundary 
conditions to assure the continuity of  and ∂/∂r at the 
discontinuity interfaces. 

In the eigenvalue problem, describe by eq. 17, the 
eigenfunction is associated with the electric field and the 
eigenvalue is associated with the propagation constant. 

The boundary conditions at each interface result in a 2 
(N + 1) system of homogeneous equations. All the 
constants should be determined except one of them which 
is imposed. The elimination of these coefficients results in 
the determination of an equation for the propagation 
constant . 

The electric field profile is normalized using energy 
considerations involving the active power, related to the 

real part of the Poynting vector: 1
2S E Hav

     . 

For ring waveguides, the radial and azimuthal 
components of Sav are given by: 
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The total energy flux along the azimuthal direction per 

unit axial length and time is determined as: 
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In order to achieve an arbitrary unit (a.u.) to the 

electric field, the following quantity is used as the 
normalization constant: 
 

 0 ( )P   


In all simulations the excitation source is located in 
=0, where the complex amplitude module of the field is 
maximum. 
 
 
 
 
 
 

3. Results 
 
In this section, some results are analyzed for the 

waveguide shown in Fig. 1. 
In this structure, the waveguide core is divided into 

three layers. The central layer (l2) and the waveguide 
external region have the same refractive index. The other 
two layers (l1 and l3) have a refractive index equal to 3.6. 
The simulation is performed using a waveguide radius of 
R= 50 µm and fixed l1 =l3=0.5µm. 

The effect of the refractive index difference n 
between the layers l1 ,l3 and the central layer l2 for several 
l2 width values is analyzed imposing a wavelength λ = 0.8 
µm. Fig. 2 shows the fundamental supermode profiles of 
the electric field for two situations: one for n = 0.15 (Fig. 
2 a)) and another for n = 0.3 (Fig. 2 b)). 

As the width l2 increases, the position of the electric 
field maximum value starts to be shifted to the layer l3. 
This effect is quite different from the case of straight 
waveguides with the core split in three layers too. In this 
case, the field is described by a symmetric curve centered 
in the middle of the l2 layer. The asymmetric distribution 
of the electric field, observed in our case, is directly 
related to the mechanism of curvature losses. 
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Fig. 2. Fundamental mode profile of the electrical field as  a  function of  the  layer  width  l2  for  two n:  a)  for                        
n =0.15 and b) for n=0.30 

 
 

With a cautious examination of Fig. 2 b), it is possible 
to identify a particular case for l2= 1 µm. The electric field 
confinement mechanism allows the understanding of this 
situation. The electric field not only is confined into the 
layer l3 but also starts to be confined into the layer 
l1(maximum located in l1). However, the majority of the 
electric filed is located in layer l3. For the same situation, 
but for the smaller value of n (Fig. 2 a)) the electric field 
is almost completed located in layer l3. In this case the 
mechanism of curvature losses are much higher since n is 
much smaller than in the previous case. 

The mechanism of energy transfers between l1 and l3 
and in the opposite direction is not equal since the electric 
field is scattered in a non-symmetric way between layers l1 
and l3. 

In Fig. 3 the real and the imaginary part of the 
propagation constant, which are the phase constant and the 

attenuation constant, respectively, are represented as a 
function of the width l2 for several n values.  

The phase and attenuations constants when n < 0.2 
increase with the increase of l2.  

As the refractive index difference increase and the 
electric field confinement is increased and becomes 
dominant, some non-linear behaviors in the phase and 
attenuation constant for specifics l2 width values appear as 
a consequence of the matching of the two referred 
mechanisms: the electric field confinement and the 
curvature losses.  

An inspection of the curve corresponding to n=0.4 
(solid curve) shows the existence of two minimums in the 
phase constant set around λ and λ/2. 
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Fig. 3. Propagation constant as a function of the l2 width 
for different n values. In fig a) is shown the real 
component of the propagation constant and in fig. b) the  
      imaginary component of the propagation constant 
 
 
Thus, for l2 multiples of the subwavelength some 

effects arise that lead to a non-monotonic behavior in the 
progress of the phase constant. As already mentioned, this 
effect is only visible for n> 0.2, supporting the idea that 
the influence of layer l1 is only relevant for higher values 
of n. 

 
4. Conclusion 
 
In the previous results, it was analyzed the electric 

field profile of the fundamental supermode, in ring 
waveguides. In all the results, the waveguide core was 
split into three layers, each one with a constant refractive 
index.   

In this type of structures, two mechanisms must be 
considered: the electric field confinement and the 
curvature losses. It may be concluded that when the 
confinement is the dominant mechanism a non-linear 
behavior appears in the results. 
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