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This work obtains soliton solutions to the governing nonlinear Schrödinger’s equation by traveling wave hypothesis. The 
model is considered with the generalized quadratic–cubic nonlinearity that is also a special case of Kudryashov’s form of 
nonlinear refractive index setting the coefficients of nonlinear terms with negative exponents, in Kudryashov’s nonlinearity, 
to zero. Based on the sign of the discriminant, plane waves, bright or singular solitons emerge. Notably, a major 
shortcoming of this approach is that traveling waves fail to recover dark optical solitons to the model. Thus, traveling wave 
hypothesis has its own limitations just as various other integrability approaches which has their own shortcomings–a strong 
message as this paper conveys. The parameter constraints for the existence of these solitons and plane waves are also 
presented. 
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1. Introduction 

 

In recent times, there has been a surge of interest in 

exploring the characteristics of localized optical pulses 

or optical solitons as they are also called especially in 

the context of transportation of data through optical 

fibers. Several works related to pulse propagation in 

connection with the telecommunication have been 

reported in the recent past which is an indication of the 

importance given by industry as well as the research 

community towards data transportation. Among several 

forms of nonlinearity quadratic–cubic (QC) type 

nonlinearity has received a lot of attention in the recent 

past. There have been reports regarding various 

conservation laws, exact analytical and numerical soliton 

solutions by means of traveling wave ansatz,  –

expansion method, variational principle and others [1–

9]. In this paper, the extension of QC nonlinearity to 

generalized QC nonlinear form is carried out. 

It must be noted that the generalized QC nonlinear 

form is also a special case of Kudryashov’s form of 

nonlinear refractive index [4]. This is obtained upon 

setting the coefficients of nonlinear terms with negative 

exponents, in Kudryashov’s nonlinearity, to zero. Thus, 

the governing nonlinear Schrödinger’s equation (NLSE) 

with this generalized QC nonlinearity is an intermediate 

form of refractive index structure that is straddled between 

QC nonlinearity and Kudryashov’s law of refractive index. 

Therefore, staying intermediate, the current paper explores 

the model with traveling wave hypothesis to reveal bright 

and singular solitons as well as plane waves as the 

discriminant dictates. The results are exhaustively displayed 

in the rest of the paper. The parameter constraints are also 

presented that indicate the existence criteria of these solitons 

and plane waves. 

 

 

1.1. Governing model 

 

We consider the dynamics of the optical pulses in a 

nonlinear medium which exhibits two power–law nonlinear 

effects. The following generalized version of QC–NLSE 

describes pulse propagation with distributed coefficients           

[4, 5]: 

 

         (  | |    | |  )               (1) 
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Here, the coefficients   and    for       are    

while       as mentioned earlier [4]. The parameter 

  is from chromatic dispersion while    represents 

nonlinear refractive index change.  

 

 

2. Traveling wave solutions 
 

We assume a traveling wave solution of the form 

 

 (   )   ( )  (       )                    (2) 

 

Substituting (2) into (1) we obtain the following 

equations for the imaginary and real parts respectively: 

 

(    )                                 (3) 

 

     (     )     
       

          (4) 

 

Eq. (3) may be satisfied by choosing      so that 

the traveling wave coordinate        . Furthermore 

on multiplying (4) by    and integrating we have 

 

     (     )   
   

   
     

 

 
  

(   )
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Here    is an arbitrary constant of integration which 

we will set to zero in the sequel. On introducing the 

transformation        we may re-write (5) as 

 

                                     (6) 

 

Here the constants  ,   and   are defined by 
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 (   )
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In order to find the solutions of (6) we consider the 

following cases: 

 

 

2.1. Case–I: (Plane waves) 

 

If        , the coefficient     Eq. (6) may 

be easily integrated to give 
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                  (8) 

 

 

where   is a constant of integration and we have 

replaced the values of     and  . The amplitude is then 

given by 
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with        . 

 

 

2.2. Case–II (Solitons) 

 

When        , we may write (6) as 

 

       [  
 

 
  

 

 
  ]                      (10) 

 

which upon making the transformation   
 

 
, may be 

expressed as 

 

     [(  
 

  
)

 

 
      

   ]                (11) 

 

We can have two subcases:  

 

 

2.2.1. Bright solitons 

 

Consider the situation when         . Setting 

    
 

  
 and assuming   

  
      

    we have the 

following equation, namely 

  

           
                                (12) 

 

Its solution is given by 
 

        (√ (    ))                     (13) 

 

As   
 

 
 with     

 

  
 we have finally for the 

amplitude 

 

 ( )  [
    

 

    
     (√ (    ))
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                (14) 

 

Thus, bright 1–soliton solution has the form: 

 

 (   )  
 

         (    ) 
 
 

  (       )        (15) 

 

where   is the amplitude of the soliton and   is its inverse 

width while   is a parameter of the soliton and   represents 

soliton speed. 
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Fig. 1. 3D graphic for (15) setting all arbitrary  

parameters to unity (color online) 

 

 

 

2.2.2. Singular solitons 

 

Here,         . In this case, writing   
  

      

    and proceeding in the same manner as above we 

obtain 

 

  [

 

  
 

    
     (√ (    ))

]

   

               (16) 

 

Therefore, the singular 1–soliton solution turns out 

to be: 

 

 (   )  
 

         (    ) 
 
 

  (       )          (17) 

 

where  ,   and   are free parameters. 

 

 

 
 

Fig. 2. 3D graphic for (17) setting all arbitrary 

 parameters to unity (color online) 

 

 

 

 

 

 

 

3.  Conclusions 
 

The current paper implemented traveling wave 

hypothesis to recover bright and singular solitons by 

traveling wave hypothesis. The sign of the discriminant 

yielded the type of solitons as listed. In the third situation 

with the discriminant, plane wave solutions have emerged. 

Notably, a major shortcoming of this approach is that 

traveling waves fail to recover dark optical solitons to the 

model. These were however successfully recovered and 

reported earlier when the more generalized model, with 

Kudryashov’s law of refractive index, was studied with the 

usage of undetermined coefficients [4]. Thus, traveling wave 

hypothesis has its own limitations just as various other 

integrability approaches which has their own shortcomings–

a strong message as this paper conveys. 
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