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The electron mobility values have been obtained at 77K using the Monte Carlo simulation technique. The values agree 
satisfactorily with available data. The mobility values thus obtained have then been expressed by simple power law 
relationship. It is observed that the mobility values calculated by using these simple power law relations yield values that 
show agreement within 5% with those obtained from the detailed Monte Carlo simulation technique. We conclude that such 
empirical relationships can be effectively used for quick determination of mobility values at different electric fields in a 
device-modelling program and in the development of CAD tools. 
 
(Received February 11, 2010; accepted April 11, 2010) 
 
Keywords: Zinc oxide, Monte Carlo simulation, Electron mobility, Empirical relation  
 

 
1. Introduction 
 
Recently, ZnO is being considered as one of the most 

suitable materials for optoelectronic applications like 
blue/Ultra Violet light sources and detectors, solar blind 
UV photodetectors and transparent field effect transistors, 
etc., [1]. ZnO is not new as a material, the mechanical, 
chemical, electrical, and optical properties of ZnO and 
other technological issues such as growth, defects, p-type 
doping, band-gap engineering, nanostructures  have 
already reported by many authors long back [2], but 
recently it has received renewed attention mainly because 
of its potential advantages over nitrides, commercial 
availability of bulk single crystals, amenability to wet 
chemical etching, a larger exciton binding energy, and 
excellent radiation hardness [2, 3].  

Though it is already mentioned that many properties 
of ZnO are well studied, not much work have been done 
yet on transport properties of this II-VI compound 
semiconductor. Recently, Baozeng Guo et al have 
obtained mobility values of electron at room temperature, 
200K and 500K[4]. With all these in mind, we have 
presented in this paper, the velocity-field characteristics of 
ZnO at 77K using the Monte Carlo (MC) simulation 
technique. The mobility values thus obtained have then 
been expressed by the simple power law relationships, the 
coefficients of which are determined by least mean square 
fit (LMSF) technique. It is found that the mobility values 
obtained from such simple power law relationships agree 
quite satisfactorily with the results obtained from detailed 
MC simulation and also with the available experimental 
data.  

To obtain the carrier transport properties, one has to 
solve the Boltzmann transport equation (BTE) taking the 
various scattering mechanisms for the charge carriers into 
account. Scattering by optical phonons, which are of the 
polar type in II-VI compound semiconductors, is known to 
be predominant in these materials [5-6] and a solution of 

the Boltzmann equation with predominant polar optical 
phonon scattering is beset with many complications, 
particularly under a large applied electric field when high 
energetic optical phonons dissipate the energy of the 
electron system to the lattice in an inelastic fashion. To 
obviate these difficulties, one has to take recourse to 
numerical techniques like the Monte Carlo simulation 
technique which has now become an important tool for 
device simulation. In this technique, the motion of the 
electron through the semiconductor is simulated in a 
digital computer by using random numbers and taking into 
account the probabilistic nature of the various electron-
lattice collision processes. The motion of a single electron 
is followed through a large number of collisions, and the 
principle of ergodicity is invoked to obtain the ensemble 
average from the time average of a single particle. 

 
 
2.  Scattering rate calculation 
     
The free flight of a carrier through the lattice is 

disturbed by collisions with lattice vibrations and impurity 
atoms. Let, at an instant of time t, the wave vector of the 
carrier be k. If the carrier suffers a collision at time t its 
wave vector changes from k to k/.  

The scatterings that have been considered here are 
scattering by ionized impurity atoms, by polar optical 
phonons and by acoustic phonons through deformation 
potential coupling and through piezoelectric interaction. 

Each of these collisions is characterized by the 
scattering rate Si (k) which is the number of collisions of 
the ith type per unit time per unit volume in the k space. 

 

( )         kd)E(E   )k(k, M4V= (k) S KK
22

ci ′−′ ′∫ δπ h (1) 

 
where Vc is the crystal volume. Mi  (k, k/) = is the matrix 
element for ith scattering mechanism for scattering from k 
state to k/ state, and may be written as  
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G(k, k/) is the overlap function, and Ai  is the matrix 
element without the overlap function and is given [7], for 
the different scattering mechanisms as 
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where    

( ) ( )( )F q,  =  S q, nc qλ λ + ±1
2

1
2 , 

 
λ is the Debye screening length, E1 is the acoustic phonon  
deformation potential coupling constant, eq is the unit 
lattice vector, hpz is the piezoelectric constant, ω1  is the 
longitudinal polar optical phonon frequency, q = ⏐k - k⁄  ⏐,  
Z is the degree of ionization of the impurity atoms, 
assumed unity and screening factor is given by 
 

( ) ( )S q, q qc
2 2λ λ= + −2  

 
Substituting the appropriate matrix elements and 

carrying out the integration in (1), the scattering rates were 
evaluated for the different scattering processes. 

It is to be noted that in Monte Carlo calculations, the 
polar optical phonon emission and absorption are treated 
as two separate processes. It is found, that the total 
scattering rate decreases rapidly with energy up to the 
optical phonon energy when optical phonon emission 
takes place and the total scattering rate increases at this 
energy. The total scattering rate then decreases as all the 
scattering rates except that for acoustic phonons are, in 
general, decreasing functions of energy. Above an energy 
of about 3eV the total scattering rate, however, increases 
with energy due to increasing occurrence of acoustic 
phonon scattering. In an actual simulation a maximum 
energy value is chosen such that the electron energy 
almost never reaches that high value and the Rees’ 
parameter, Γ is taken as the total scattering rate at that 
chosen maximum energy. This choice obviously requires 
an a-priori knowledge of this variation of the total 
scattering rate with energy in the material. The type of 
variation of the total scattering rate as described above is 
characteristic of the II-VI compound semiconductors and 
is the same for all the semiconductors considered here. 

 
 
3.  The Monte Carlo simulation procedure 
      
The carrier is presumed to start with an initial wave 

vector ko. Under the influence of the external electric field, 
it accelerates and continues its motion in what is called its 
free flight. The duration of the free flight is estimated by a 

pseudorandom number ro distributed uniformly between 0 
and 1. The time at which the collision takes place is given 
by 

 
( )t ln  rc 0= − Γ                            (2) 

 
where Γ is the chosen Rees’ parameter. Γ has been 
rendered constant over the energy range considered by 
including a self-scattering term such that the sum of all the 
real scattering rates plus the self-scattering rate remains 
constant over the entire energy range considered. It has 
been shown that the steady state value obtained by 
including the self-scattering term is indeed the value 
corresponding to the real scatterings [8]. The wave vector 
of the carrier at the end of the free flight is k and this is 
computed by using the laws of classical mechanics. Once 
tc is determined, one may obtain the trajectory of the 
electron from 0 to tc by using the laws of Newtonian 
mechanics. 

Having determined the instant at which the free flight 
has been terminated, one has to determine the type of 
collision that terminated the free flight. The scattering 
rates Si corresponding to the various scattering 
mechanisms for the carrier with wave vector k are then 
computed by using the expressions detailed in [7]. Next, 
another random number r1 is used to ascertain which one 
of the n scattering mechanisms including the self 
scattering processes has been operative. The jth mechanism 
is chosen to terminate the free flight, if 
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Having determined the kind of scattering, the energy 

and the wave vector of the electron after a real collision 
are determined from the conservation of the energy and 
the momentum. The energy of the electron after collision 
is given by E + ΔE, where ΔE is the change in energy 
induced by the collision and E is the energy of the electron 
immediately before the collision. It is given by 

( )E =  k t m2 2
ch 2 ∗  

 
For acoustic, piezoelectric and ionized impurity 

scatterings ΔE is taken equal to zero while for polar optical 
phonon scattering it is equal to  ±  hωl.  

The magnitude of the electron wave vector after the 
collision is then given by  
 

( )[ ]k m E + Ei =
∗2

1
2Δ h  

 
This value of the wave vector is taken as the initial 

wave vector for the next free flight. 
The orientation of the wave vector after collision is 

obtained by generating two more random numbers r2 and 
r3, distributed uniformly between 0 and 1. We note that the 
probability that the polar angle θ and the azimuthal angle φ 
of the wave vector ki with respect to any convenient 
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direction, will be contained in the intervals dθ and dφ is 
proportional to Sinθdθdφ. θ and φ can, therefore, be 
chosen with the random numbers r2 and r3 as  
 

221cos r−=θ  

3.2 rπφ =  
 

The distribution function of the electrons has also 
been obtained from the results of these computations. For 
this purpose the entire k space is subdivided into a large 
number of cells and the time the electron spends in a 
particular cell of the k space is logged and this value is 
normalized by the total time. This gives the probability of 
the electron being in that cell, and hence the energy 
distribution function. The normalized distribution function 
thus obtained is shown Fig. 1 for ZnO at 77K for applied 
electric fields of 5 and 10 kV/cm for zero ionized impurity 
concentration. 

The average velocity can be obtained from 
displacement and time by dividing the total displacement 
along the field direction by the total time. 
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The average velocity can also be obtained from the 

energy and momentum by using the relation [2]. 
 

( ) ( )v E E k kd f i fz iz= − −− ∑∑h 1      (4) 
 
where Ei and Ef are respectively the energy after a 
collision and before the next collision. kiz and kfz are the 
corresponding components of the wave vector in the field 
direction. It is to be noted that the velocity values obtained 
by using the above two methods agree exactly with each 
other. It may be noted that calculation of velocity by this 
method is not possible at low fields as the unbalanced part 
of the random velocities could be comparable to the drift 
velocity. To avoid this difficulty, the low field mobility is 
evaluated in the Monte Carlo simulation indirectly through 
the diffusion constant by using the Einstein relation. 

 
 
4. Empirical relations 
 
The electron mobility has been calculated in ZnO at 

77K for electric fields up to 50 KV/cm by the MC 
simulation technique. The empirical relations at 77K 
between electron mobility μ and the applied electric field 
E is of the form 

 
μ μ 0 1= + a E + a E + a E1 2

2
3

3           (5) 
 
where μ0 is the low field mobility and the values of the 
coefficients a1, a2, a3 as well as the calculated values of the 
low field mobility, μ0 for ZnO at 77K is shown in Table 1.  

 

Table 1. Values of coefficients for least-mean-squares fit 
of mobility. 

 
Material μ0 

(cm2v-1s-1) 
a1 

(kV/cm)-1 
a2 

(kV/cm)-2 
a3 

(kV/cm)-3 

ZnO 1867 -5.5E-2 1.6E-3 -1.5E-5 
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Fig. 1. The  normalized  distribution function for ZnO at 
77K for applied electric fields of 5 and 10 kV/cm for zero 
ionized        impurity         concentration.        (1) 5 kV/cm        

(2 10 kV/cm. 
 

 
 

Fig. 2. Variation of electron mobility in ZnO with applied 
electric     field    at    77K,   (1) Monte Carlo  simulation,    

(2) Empirical Relation [5]. 
 

 
5.  Results and discussion 
 
The model for Monte Carlo simulation described 

earlier is implemented in C.  Formulations for computation 
of different band properties, such as overlap integral, 
δγ/δΕ etc. are included in the program. Also included are 
scattering rate computation routines for various scattering 
processes. The simulation is found to converge after 
between 50 and 100 thousand real scatterings depending 
upon the applied electric field and the material considered.  

In Fig. 2, we have plotted the variation of the electron 
mobility with the applied electric field for ZnO for an 
ionized impurity concentration of 1015 cm-3. It is found 
that the mobility decreases monotonically with the applied 
electric field. We have compared the mobility values with 
the values obtained by empirical relations and shown the 
comparison in the same figure. We found that by retaining 
terms up to the 3rd order, the empirical relations give 
values accurate to within 3% of the values obtained from 
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the detailed MC simulation technique. The Monte Carlo 
Simulation results agree with the other available 
theoretical results. Mukhopadhyay and Bhattacharya 
theoretically investigated the velocity-field characteristics 
of ZnO using the displaced Maxwellian model for the 
energy distribution of the  free carriers  and considering 
the combined effects of acoustic, piezoelectric, ionized 
impurity and polar optical modes of scattering at 77K and 
300K [9]. Our present results of ZnO using the Monte 
Carlo simulation technique agree satisfactorily with those 
calculations at 77K. 

 
 
6. Conclusions 
 
It is concluded that the relation (5) between the 

mobility and electric field will be useful for quick 
estimation of mobility in II-VI compound semiconductors 
under high field conditions without having recourse to 
detailed Monte Carlo technique in device simulation and 
for quick comparison of experimental data with theoretical 
results. 
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