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The terminal wiener index (TW) of a tree T was defined recently by Gutman et al [1] as TW(T)= 
 )T(

);();(
Euve

venuen , where 

n(e;u) is the number of pendent vetices in T lying closer to u than to v. In this paper, we first introduce a new topological index, 

named modified terminal wiener index (MTW), by extending the definition of terminal wiener index to any connected graph. 

Then we investigate the mathematical property of MTW and compute the MTW for a type of dendrimer nanostars. 
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1. Introduction 

 

Let G be a graph with edge set E(G). For an edge 

e=uv in E(G), we let n(e;u) and n(e;v) be the number of 

pendent vetices in G lying closer to u than to v and the 

number of pendent vertices in G lying closer to v than to u, 

respectively. The terminal wiener index (TW) of a tree T 

was defined recently by Gutman et al [1] as the sum 
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This index has been investigated in [2] for thorn 

graphs and in [3] for equiseperability. The problem of 

computing topological indices of nanostructures is 

introduced firstly by Diudea and his coauthors [4-8]. After 

that, there are many papers dealing with computing 

topological indices of various nanostrutures, see [9-25] 

and the references cited therien. Obviously, the above 

definition for TW is invalid for graph without pendent 

vertices. Suppose that );e( u and );e( v  are the 

number of vetices of minimum degree in G lying closer to 

u than to v and the number of vertices of minimum degree 

in G lying closer to v than to u, respectively. Now, we 

extend the definition of TW to any connected graph by 

replacing in the above formula );( uen  and );( ven  by 

);e( u and );e( v , respectively, and we call this new 

index modified terminal wiener index (MTW), that is, 
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From the definition above, it is evident that if the 

graph under consideration is a tree, then MTW coincides 

with TW. 

A dendrimer is an artificially manufactured or 

synthesized molecule built up from branched units called 

monomers, see Figs. 1 and 2 for instance. 

In this paper, we first investigate the mathematical 

property of MTW index, and then we give explicit 

computing formulas of MTW index for a type of dendrimer 

nanostars. 
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Fig. 1. The dendrimer nanostar NS[n]. 

 

2. Main results 

 

We first investigate the mathematical properties of the 

modified terminal wiener index (MTW). 
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Proposition 1.  Let G be a nontrival connected 

graph on 4n vertices. Then 

 

0)( GMTW , 

 

where the equality holds if and only if G  is a graph 

with exactly one vertex of minimum degree. 

Proof. Since the contribution of each edge to MTW in 

a connected graph G is at least 0, we have 

0)( GMTW . If MTW(G)=0, then the contribution of 

each edge in G to MTW  is 0. So, for each edge e=uv in G, 

we have 0);( ue  or 0);( ve . Suppose that G 

has two vertices, say x and y, of minimum degree. Assume 

now that there exists an edge e=uv such that 0);( ue . 

Thus, 2);( ve . Then there exists a path 

yxP , connecting x and y. Clearly, there exists an edge 

vue  along the path yxP ,  such that x is closer to 

u and y is closer to v (here if x and y are adjacent, then 

the edge e is just xy). But then, 

1);();(  veue  and thus, MTW(G)>0, a 

contradiction. Conversly, if G has exactly one minimum 

degree vertex, then the contribution of each edge to MTW 

is 0 and then MTW(G)=0. 

Remark. In Poposition 1, if n=2 or 3, then G is the 

paths 2P , 3P  or the cycle 3C . Celarly, each of these 

graphs has more than one minimum-degree vertex. Thus, 

we assum that 4n in above proposition. 

Proposition 2.  Let G be a connected bipartite graph 

on 2n  vertices with n being even. Then  

,
16

)(
4n

GMTW   

where the equality holds if and only if G is a balanced 

complete bipartite graph

2
,

2

K nn . 

Proof. Note that the contribution of each edge to 

MTW in a connected graph G is at most 
422

2nnn
 and 

that G has at most 
422

2nnn
 edges. So, we 

have
16

)(
4n

GMTW  , with the equality holds only if G 

has exactly 
422

2nnn
 edges and the contribution of 

each edge to MTW is exactly 
422

2nnn
 , implying that 

G is isomorphic to 

2
,

2

K nn . Conversly, if G is isomorphic 

to 

2
,

2

K nn , we clearly have 
16
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We conjecture that among all connected graphs of n 

vertices, the balanced complete bipartite graph 
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has the maximum modified terminal wiener index. 

 

 
 

Fig. 2. The dendrimer nanostar NS[1]. 
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Fig. 3. The nucleus of dendrimer nanostar NS[n]. 

 

 

 

 

 

 

 

 

Fig. 4. The red edge denotes edge of Type A and the green  

edge denotes edge of Type B. 

 
Now, we are in a position to give an explicit 

computation formula for a type of dendrimer nanostars, as 

shown in Fig. 1.  

By the definition of nanostars, we know that for the 

nanostar NS[n], there are 1423 2  n
 vertices in total, 

among which there are 82 3 n
 vertices of degree 2, 

and 62 2 n
 vertices of degree 3, respectively. Firstly, 
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we compute the value );();e( veeu  for any one edge 

e=uv in NS[n].  

For the sake of brevity, if there is an edge whose two 

ends are of degree i and j, respectively, then this edge is 

simply said to be an ),( ji edge in the subsequent part 

of this paper. We need only to consider the contributions 

of three types of edges, namely, (2,2)-edge, (2,3)-edge and 

(3,3)-edge to MTW.  

For any (2, 2)-edge e=uv in the hexagon of the 
thn stage, we have  

3);( ue  and 52);( 3  nve  ( or 

3);( ve  and 52);( 3  nue ) .  

The total number of such edges is 
22 n

. 

 For any (2, 3)-edge e=uv in the hexagon of the 

thn stage satisfying d(u)=2 and d(v)=3, we have 

3);( ue  and 52);( 3  nve .  

The total number of such edges is 
12 n

. 

 For any (2, 3)-edge e=uv of  type A (see Fig. 4) in 

the hexagon of the 
thi ( 10  ni ) stage satisfying 

d(u)=2 and d(v)=3, we have 

52125)2...23);( 311   inininve （  

and 1322);( 33   innue .  

The total number of such edges is 
12 i
. 

 For any (2, 3)-edge e=uv of  type B (see Fig. 4) in 

the hexagon of the 
thi ( 10  ni ) stage satisfying 

d(u)=2 and d(v)=3, we have 

12225)2...21(3);( 21-2   inininue

 and 922);( 23   innve .  

The total number of such edges is 
22 i

. 

 For any (3, 3)-edge e=uv, between the vertices in 
thi  

layer and vertices in 
thi )1(  layer ( 10  ni ), we 

have 

3225)2...21(3);( 21-2   inininue  

and  

1122);( 23   innve   

(or 

3225)2...21(3);( 21-2   inininue  

and 1122);( 23   innve ).  

The total number of such edges is 
12 i
.  

Now, we consider the contributions of the edges in the 

nucleus, see Fig. 3. In the following, we use )(e  to 

denote the contribution of an edge e to MTW. By an 

elementary calculation, we have  

)22(6)()()()( 3

4321  neeee  , 

)1-2(9)()( 3

75

 nee  ,  

)52(3)()( 3

86  nee  . 

6

1 2)(  nf , 

)22(6)()()( 3

432  nfff  , 

)52(3)()()()( 3

8765  nffff  . 

6

321 2)()()(  nggg  ,

)22(6)()( 3

54  ngg  ,

)42(4)()()( 3

876  nggg  , 

)32(11)( 3

9  ng . 

By arguments above, we thus obtain 
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3. Conclusion 

 

In this paper, a new topological index, named 

modified terminal wiener index (MTW) is proposed by 

extending the definition of terminal wiener index to any 

connected graph. The mathematical properties of MTW are 

investigated and the MTW of a type of dendrimer 

nanostars is obtained. 
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