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We attempt to analyze different theories for the calculation of antireflective nanostructures. How to choose an appropriate 

theory and the reason is considered in given conditions. Based on our analysis, effective medium theory (EMT) is 

unsuitable for nanostructures with a dimension (period) much smaller than the incident wavelength, as higher order 

diffraction waves other than the zeroth order diffraction propagate here. Rigorous coupled wave analysis (RCWA) can only 

be used in rigorously periodic conditions because the boundary conditions must be periodic, no matter the dimension of 

period. Finite element method (FEM) can be used in any conditions but with an excessive computation consumption. 
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1. Introduction 

 

Antireflective nanostructures have attracted enormous 

attention recently because they can dramatically suppress 

the reflection losses and increase transmission of light at 

the interface simultaneously over a large range of 

wavelength and a large field of view [1], which are crucial 

to the performance of optical and electro-optical devices. 

For example, the antireflective nanostructures on solar 

cells can improve the efficiency of them [2,3], and in flat 

panel display or detector applications, antireflective 

surfaces are usually employed to increase transmission and 

eliminate ghost images or veilglare caused by reflection 

from the optical surfaces, promoting the performance of 

the devices [4]. 

In order to design appropriate nanostructures before 

fabrication, different theories have been proposed for 

analyzing and calculating the reflective characteristics of 

antireflective nanostructures. For example, effective 

medium theory (EMT) approximates the antireflective 

surface to a stack of homogenous thin film with the 

effective gradient indices of refraction [5]. Rigorous 

coupled wave analysis (RCWA) has been commonly 

applied to yield accurate Maxwell’s equations to calculate 

the reflective efficiency [6]. Some other methods such as 

the finite element method (FEM) and the finite-difference 

time-domain (FDTD) method provide numerical 

calculations to obtain the reflected optical power of the 

structures [7]. 

These theories contribute a lot to analysis, design and 

optimization of antireflective nanostructures. However, 

there are also limitations and applicable conditions for 

each theory. Until now, little research has been done on 

the comparison of these theories or how to choose an 

appropriate theory in a given condition. Therefore, in this 

paper we provide some effective analysis and clarify the 

reason why some theories are suitable while others are not, 

which is significant for researchers to effectively design 

and analyze a nanostructure with high quality under 

different conditions, besides, give a guide to comprehend 

those theories. 

 

 

2. Theory heading 

 

The schematic illustration of an antireflective 

nanostructure is shown in Fig. 1.  and h  represent the 

period and groove depth, 0n  and gn  are the refractive 

indices of the incident medium and substrate medium, 

respectively. 

 

 
Fig. 1. The schematic illustration of a nanostructure. 

 

 

2.1 Effective medium theory (EMT) 

 

When the period or irregularity of antireflective 

surface nanostructure is much smaller than the incident 

wavelength, EMT is available to analyze and calculate the 

reflective characteristics [8, 9, 10]. A nanostructure 
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surface can be approximated as a set of multiple layers of 

the ‘‘effective medium’’ having refractive indices (RI) in 

the limit of the substrate and ambient. The effective RI 

( n ) of the ‘‘effective medium’’ can be approximately 

obtained from the filling factor ( f ) of the individual 

rough layers. The effective RI ( n ) of the mixture will be 

given by 
2 2 2 2

1 2 1
12 2 2 2

1 2 1

(1 )
2 2

n n n n
f

n n n n

 
 

 
               (1) 

1n and 2n  are the RIs of the substrate and ambient, 

respectively. The antireflective nanostructure can be 

approximated to a number of lamellar grating layers with 

different filling factors as shown in Fig. 1. As a result, the 

nanostructure can be regarded as massive pieces of 

homogenous layers with effective gradient RI, moreover, 

the incident and substrate medium are supposed to be 

homogeneous. Then the reflectances can be analysed using 

thin-film optics theory. 

 

 

2.2 Rigorous coupled-wave analysis (RCWA)   

 

To analyze and calculate the reflective characteristics 

of antireflective nanostructures, RCWA is widely used for 

obtaining the exact solution of Maxwell’s equations [11, 

12].  
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Fig. 2. The geometry for reflection and transmission  

of a nanostructure. 

 
As is shown in Fig. 2, the whole structure can be 

further divided into three regions: incident (region 1), 

grating (region 2), and exit region (region 3). 

The boundary between the 1 (relative permittivity of 

region 1) dielectric and the 3  (relative permittivity of 

region 3) dielectric in region 2 is givenby 

 

( ) ( )z F x F x                           (2) 

Here,   and h  represent the period and groove depth, 

z and x are the coordinates of the structure, we choose 

TE mode for simplicity.The total electric field in region 1 

is the sum of the incidentand the backward-traveling wave. 

The normalized totalelectric field in region 1 can be 

expressed as 

1 1 1( ) exp( )i i

i

E exp jk r R jk r




       (3) 

Where 1k  is the incident-field wave vector 

ofmagnitude, iR  is thenormalized amplitude of the 

i threflected wave in region 1with wave vector 1ik . 

Likewise, the normalized total electricfield in region 3 is 

3 3exp[ ( )]i i

i

E T jk r dz




                (4) 

where iT is the normalized amplitude of the i th 

transmittedwave into region 3 with wave vector 3ik and 

d is the groovedepth. The quantities 1ik  and 3ik  are 

determined byusing the phase-matching requirement. 

In RCWA, a series of layers parallel to the surface are 

introduced to explain the cross-section of the grating 

structure or the groove. Therelative permittivity for the 

n th slab grating is periodic, and may be expanded in a 

Fourier series as 

1 3 1 ,( , ) ( ) exp( )n n h n

h

x z jhKx    




     (5) 

where nz is the z coordinate of the n th slab, h is the 

harmonicindex, K is the magnitude of the grating vector 

( 2 /K   ),and ,h n   are the normalized complex 

harmonic amplitudecoefficients given by 

,

0

(1/ ) ( , )exp( )h n nf x z jhKx dx


       (6) 

where the function ( , )nf x z is equal to either zero or 

unity,depending on whether, for a particular value of x , 

the gratingrelative permittivity is 1 or 3 , respectively. 

And the total field is thus expressed as 

2, , ,( )exp( )n i n i n

i

E S z j r




               (7) 

 

2.3 Finite element method (FEM) 

 

FEM is a numerical technique tofind approximate 

solutions for boundary value problems in mathematics, 

which uses various methods (the Calculus of variations) to 

minimize an error function and produce a stable solution. 

Analogous to the idea that connecting many tiny straight 

lines can approximate a larger circle, FEM encompasses 

all the methods of connecting many simple element 

equations over many small subdomains, named finite 

elements, to approximate a more complex equation over a 

larger domain [13, 14, 15]. 
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3. Method 
 

In this paper, we use Rsoft and Comsol to obtain 

results from RCWA and FEM respectively. Use Matlab to 

solve effective RI of the mixture and Optilayer to calculate 

the reflectance of nanostructures using EMT. 

 
4. Calculated results and discussion 
 

The three theories provide us different methods to 

analyze and calculate the reflective characteristics of 

antireflective nanostructures. To make comparison of 

RCWA and EMT, the following results show that the two 

theories can prove each other.  
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Fig. 3. Comparison of reflectance using RCWA and 

EMTin the model shown in Fig. 1 with 3.48gn  , 

0.1 m  , 0.5h m , (a) is with different 

wavelengths at normal incidence. Black curve is using 

RCWA for TE polarization and purple one for TM, red 

curve is using EMT for TE and TM polarization. (b) is 

with different incident angles at 0.55 m  . Black 

curve is for TE polarization and purple one for TM 

calculated  by  RCWA,  red  curve  is  for TE polarization  

              and pink one for TM calculated by EMT. 

 

Fig. 3 shows comparision of reflectance using RCWA 

and EMT in the model shown in Fig. 1. Parameters are 

3.48gn  , 0.1 m  , 0.5h m . Fig. 3 (a) is 

reflectance dependence on incident wavelength at normal 

incidence. Black curve is using RCWA for TE polarization 

and purple one for TM, red curve is using EMT for TE and 

TM polarization. As is shown, the R   curve 

calculated by EMT has the same behavior as that by 

RCWA in TE mode but differs 0.01~0.02 for reflectance 

in TM mode at normal incidence. Because for EMT, the 

antireflective nanostructureis supposed to be a number of 

lamellar grating layers with different filling factors and 

thereflectance can be analyzedusingthin-film theory, 

which is an approximate computation.Thus in the case of 

normal incidence, through EMT, the same results for both 

TE and TM polarizations were obtained from thin-film 

theory, but in actual nanostructures the results for TE and 

TM polarizations are different as calculated by RCWA. 

Fig. 3 (b) is the reflectance dependence on incident angle 

at 0.55 m  . Black curve is for TE polarization and 

purple one for TM calculated by RCWA. Red curve is 

using EMT for TE polarization and pink one for TM. As is 

shown, R   curve calculated by EMT is rather similar 

to that by RCWA at any incident angle in TE mode. 

However for TM mode, EMT is close to RCWA only if 

the incident angle is below 45°. 
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Fig. 4. Comparison of reflectance with different 

parameters at normal incidence of TE polarization, (a) is 

reflectance dependence on heights of the 

nanostructurewith =3.48gn , = 0.1 m using RCWA, 

(b) on EMT, and (c)is total reflectance dependence on 

period of the nanostructure with c, 

= 0.1 m 0.5h um using RCWA. (d) is reflectance   

of     the     +  1th    order    with    =3.48gn , = 0.9 m   

                     and = 0.5h m  using RCWA. 
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Fig. 4 shows reflectance dependence of wavelength 

for the nanostructures with different period and height 

calculated by EMT and RCWA, respectively. Fig. 4(a) 

shows the reflectance dependence on heights of the 

nanostructure calculated by RCWA, as is shown, the 

reflectance rises when the groove depth decreases, which 

is consistent with the results calculated by EMT shown in 

Fig. 4 (b), but they have rather small divergency, because 

for EMT more layers are introduced when the height gets 

larger, as a result, the gradient reflective approximation 

becomes more accurate. Fig. 4 (c)is total reflectance 

dependence on period of the nanostructure calculated by 

RCWA, as is shown, the reflectance rises when the period 

increases. Because higher order diffraction waves other 

than the zerothdiffraction order begin to propagate (as 

shown in Fig. (d)) when the period increases, which is a 

characteristics of gratings. These results above indicate 

that EMT is not suitable for large period (  ) because 

higher order diffraction rather than zeroth order diffraction 

waves propagate now, which doesn’t correspond to the 

thin-film theory. Fig. 4 (d) shows the reflectance of the 

+1th order, as a result, the +1th order wave begins to 

propagate when the period increases, but when the 

incident wavelength become rather larger, the +1th order 

disappears, therefore, only the zeroth order wave 

propagates. 

RCWA provides an accurate analysis of diffraction of 

electromagnetic waves and computes rapidly, however 

unsuitable for non-periodical structures, that is to say we 

should suppose a calculation yieldrigorous periodical 

condition [4, 9].  

To expound the progration of incident wave in 

nanostructure, FEM is adopted to give the distribution of 

E-field as is shown in Fig. 5. 

 

 
Fig. 5. Distribution of E-field ( /V m ) in the nanostructure 

 at an incident angle of 30°. 

 

 

In Fig. 5, the left schematic is an amplified schematic 

of E-field distribution in nanostructure based on the right 

one. We can see five units of period which is smaller than 

the incident wavelength. For a plane wave with TE 

polarization, it is obvious that through the nanostructure, 

light keeps its anterior character of propagation, so the 

reduction of reflectance in nanostructures is not due to the 

increase in diffuse scattering but solely the consequence of 

enhanced transmission. Hence, it is suitable to understand 

how EMT explains the phenomenon since EMT 

regardsnanostructureas a number of lamellar grating layers 

with gradient RIs which can be analyzedusingthin-film 

theory. 
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Fig. 6. Comparison of reflectance using RCWA (black 

curve) and FEM (red curve) with TM polarization and 

0.5 , 0.1h m m    . (a) is with different 

wavelengths  at   normal incidence,    and    (b)    is   with  

             different incident angles at 0.55 m  . 

 

 

Fig. 6 shows the comparison of reflectance 

dependence on wavelength and angle of incident using 

RCWA (black curve) and FEM(red curve)with TM 

polarizationand 0.5 , 0.1h m m    . As is shown, 

the computing results of the two theories are almost 

identical. To differentiate, FEM can deal with random 

structures however it has an excessive computation, and its 

working efficiency is in proportion to the dimension of 

calculation region. 

 

 
5. Conclusion  

 

This paper has analyzed different theories and made 

comparisons when dealing with the nanostructure. To 

choose a suitable method, conclusions are as follows. 

When the period of nanostructure is larger than the 

incident wavelength, RCWA is the best choice because it 

works faster and accurately as well. FEM is accurate but 

with a massive computation. Besides, EMT is forbidden 
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because only the zeroth order propagation is considered 

here while higher order propagations are not considered by 

EMT.  

Else if the period is much smaller, RCWA and FEM 

are more accurate than EMT. For EMT, TE and TM 

polarizations have the same reflectance at normal 

incidence, however it’s not the fact. 

And in a non-periodic one, RCWA shouldn’t be 

chosen as its calculating field must be periodic. EMT 

works best as FEM computes tediously. 
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